何正磊

太阳成集团tyc234cc副教授,碩士生導師。

郵箱:hezhenglei@gdut.edu.cn

基本信息

法國裡爾大學博士,太阳成集团tyc234cc“青年百人計劃”A類引進人才。International Journal of Computational Intelligent systems期刊區域主編。主持或參與國家重點研發計劃、國家自然科學基金等科研項目10餘項,在Environmental Science & Technology、IEEE Transaction等生态環境領域和計算智能領域權威期刊發表論文40餘篇,獲中國紡織工業聯合會科學技術進步獎等獎項。

研究方向

智能建模與智慧環境優化

數字智能驅動減污降碳協同增效

節能與清潔生産

多标準決策與多目标優化

數字孿生與AI大模型

數字化與智能化的環境系統工程應用

工作經曆

2024.07-至今:太阳成集团tyc234cc暨環境生态工程研究院,副教授

2021.07-2024.07:華南理工大學,助理研究員

教育經曆

2017.09-2020.12:法國裡爾大學,自動化與智能制造,博士

2014.09-2017.06:武漢紡織大學,紡織科學與工程,碩士

2016.07-2016.08:美國杜克大學,訪學

2010.09-2014.06:武漢紡織大學,紡織工程,學士

學術兼職

International Journal of Computational Intelligent systems(歐洲模糊邏輯和技術學會會刊)區域主編

Advanced Materials & Sustainable Manufacturing編委

International Research Institute for Artificial Intelligence and Data Science, Dong A University國際主委委員

FLINS2022(Nankai University), DSBFI2023(Donga University), ISKE2023(Fujian Normal University), GCPC2023(Elsevier, Fudan University),EAIRAIDS2024(University of Lille)國際會議大會委員或分會場主席

Applied Science, Journal of Smart Environments and Green Computing, EAI Endorsed Transactions on AI and Robotic客座編輯

主要榮譽

中國紡織工業聯合會科學技術進步獎

BEST PAPER AWARDofthe 19th Conference on Intelligence Systems and Knowledge Engineering2024

2024過程系統工程工程年會優秀論文獎

中國生态學學會産業生态專委會學術年會優秀學術報告獎

中國造紙2023年度優秀論文(兩篇入圍)

華南理工大學優秀班主任

國家公派留學獎學金

湖北省海外遊學獎學金(杜克大學,美國)

研究生國家獎學金

武漢紡織大學優秀碩士學位論文

武漢紡織大學優秀畢業生

科研項目

廣州市基礎與應用基礎研究(造紙工業過程的溫室氣體排放動态模拟方法研究)

國家地方聯合工程實驗室開放課題(牛仔清潔生産技術的集成與優化應用研究)

華南理工大學引智計劃(Xianyi Zeng, Kim Phuc Tran, Rafiqul Gani)

國家重點研發計劃(一帶一路沿線典型重污染行業清潔生産技術比較與應用聯合研究)

國家自然科學基金(造紙污水處理過程溫室氣體形成機制及減排調控模型研究)

廣東省重點領域研發計劃(面向陶瓷工業智能制造的工藝設計與生産工業軟件研發)

人工智能與數字經濟廣東省實驗室(廣州)青年學者項目(基于人工智能的工業過程用電預測與預購電策略)

中央高校基本科研業務費專項資金資助(工業系統的多尺度環境分析模型與生态調控)

制漿造紙工程國家重點實驗室重點項目(造紙生産過程數字孿生關鍵技術研究)

代表性科研成果

(一)論文發表

1.He, Z.,Z. Lu,X. Wang,Q.Xiong, K. Tran, S. Thomassey, X. Zeng, M. Hong and Y. Man(2024).Multi-objective Optimization of Papermaking Wastewater Treatment Processes Under Economic, Energy, and Environmental Goals.Environmental Science &Technology,(Accept).

2.He, Z.,S. Li,Y.Wang,B.Chen,J.Ren,Q.Xiong,Y.Man(2024).Interpretable GHG emission prediction for papermaking wastewater treatment process with deep learning.Chemical Engineering Science,Available online 10 July 2024, 120492.https://doi.org/10.1016/j.ces.2024.120492

3.Bi, H.,Zhao X.,Xu D.,Liu J.,He, Z*.,An L., Zhu B., Sun C.,LiZ. (2024)Differences in anodizing of two copper-containing coordination compounds by different degradation factors: experiments and DFT calculations.Journal of Cleaner Production,Available online 21 June 2024, 142969https://doi.org/10.1016/j.jclepro.2024.142969

4.Liang, X., Zhang, Q.,Man, Y.,He, Z*. (2024) Toward sustainable process industry based on knowledge graph: a case study of papermaking.Discover Sustainability,5:93.https://doi.org/10.1007/s43621-024-00259-6

5.He, Z.,C. Liu, Y. Wang, X.Wang,and Y. Man (2023). Optimal operation of wind-solar-thermal collaborative power system considering carbon trading and energy storage.Applied Energy, 352: 121993.https://doi.org/10.1016/j.apenergy.2023.121993

6.He, Z., M. Hong, H. Zheng, J. Wang, Q. Xiong, and Y. Man (2023). Towards Low-carbon Papermaking Wastewater Treatment Process based on Kriging Surrogate Predictive Model.Journal of Cleaner Production, 425: 139039.https://doi.org/10.1016/j.jclepro.2023.139039

7.Man, Y., Yan, Y., Ren, J., Wang, X., Xiong, Q., &He, Z*(2023). Overestimated Carbon Emission of the Pulp and Paper industry in China.Energy, 273: 127279.https://doi.org/10.1016/j.energy.2023.127279

8.He, Z., Chen, G., Hong, M. Xiong, Q., Zeng X., & Man, Y. (2023) Process Monitoring and Fault Prediction of Papermaking by Learning from Imperfect Data.IEEE Transactions on Automation Science and Engineering(Early Access).https://doi.org/10.1109/TASE.2023.3290552

9.Zhang, Z., He, X., Man, Y.,&He, Z*.(2023) Multi-objective scheduling in dynamic of household paper workshop considering energy consumption in production process.Journal of Smart Environments and Green Computing, 3:87-105.http://dx.doi.org/10.20517/jsegc.2023.05

10.He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Changhai, Y. (2022) Multi-Objective Optimization of the Textile Manufacturing Process Using Deep-Q-Network Based Multi-Agent Reinforcement Learning.Journal of Manufacturing Systems, 62: 939-949.https://doi.org/10.1016/j.jmsy.2021.03.017

11.He, Z., Qian, J, Man, Y., Li, J., & Hong, M.(2022)Data-driven soft sensors of papermaking process and its application to cleaner production with multi-objective optimization.Journal of Cleaner Production,372: 133803.https://www.sciencedirect.com/science/article/pii/S0959652622033790

12.Zhang, H.,Li, J., Hong, M.,Man, Y., &He, Z*. (2022) Cost Optimal Production-Scheduling Model Based on VNS-NSGA-II Hybrid Algorithm—Study on Tissue Paper Mill.Processes,2022, 10: 2072.https://doi.org/10.3390/pr10102072

13.He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Changhai, Y. (2021) Modeling of Textile Manufacturing Processes Using intelligent techniques: a review.International Journal of Advanced Manufacturing Technology,116, 39–67. https://link.springer.com/article/10.1007/s00170-021-07444-1

14.Xu, J., Liu, F,He, Z*., Li, S. (2021).Cost Optimization of Sodium Hypochlorite Bleaching Washing for Denim by Combining Ensemble of Surrogates with particle swarm optimization.Journal of Engineered Fibers and Fabrics.https://doi.org/10.1177/15589250211022331

15.HE, Z., TRAN, K. P., THOMASSEY, S., ZENG, X., XU, J., & YI, C. (2021) A Deep Reinforcement Learning Based Multi-Criteria Decision Support System for Optimizing Textile Chemical Process.Computers in Industry,125(February 2021): 103373https://doi.org/10.1016/j.compind.2020.103373.

16.Xu, J., Liu, F,He, Z*., Li, S. (2021).Cost Optimization of Sodium Hypochlorite Bleaching Washing for Denim by Combining Ensemble of Surrogates with particle swarm optimization.Journal of Engineered Fibers and Fabrics.https://doi.org/10.1177/15589250211022331

17.He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Changhai, Y. (2020). Modeling color fading ozonation of reactive-dyed cotton using the Extreme Learning Machine, Support Vector Regression and Random Forest.Textile Research Journal,90(7-8), 896-908.https://doi.org/10.1177/0040517519883059

18.Xu, J.,He, Z*., Li, S., & Ke, W. (2020). Production cost optimization of enzyme washing for indigodyed cotton denim by combining Kriging surrogate with differential evolution algorithm.Textile Research Journal,90(15-16): 1860-1871.https://doi.org/10.1177/0040517520904352

19.He, Z., Li, M., Zuo, D., Xu, J., & Yi, C. (2019) Effects of color fading ozonation on the color yield of reactive-dyed cotton.Dyes and Pigments,164, 417-427.https://doi.org/10.1016/j.dyepig.2019.01.006

20.He, Z.,Li, M., Zuo, D., & Yi, C. (2019). Color fading of reactive-dyed cotton using UV-assisted ozonation.Ozone: Science & Engineering,41(1), 60-68.https://doi.org/10.1080/01919512.2018.1483817

21.He, Z., Li, M., Zuo, D., & Yi, C. (2018). The effect of denim color fading ozonation on yarns.Ozone: Science & Engineering,40(5), 377-384.https://doi.org/10.1080/01919512.2018.1435259

22.李世忠,滿奕,何正磊*.(2024)基于DNN-LSTM的造紙污水處理過程溫室氣體排放分析模型,中國造紙.2024,43(04):170-176.

23.陳國健,李繼庚,陳波,滿奕,何正磊*. (2024)基于自編碼的長流程造紙過程斷紙故障識别,中國造紙. 2024,43(03):113-120+141.

24.朱小林,劉昌,滿奕,何正磊*. (2024)考慮碳交易和儲能系統的風光火協同優化運行,華北電力大學學報. (網絡首發)

25.劉昌,朱小林,滿奕,何正磊*. (2023)面向造紙園區的多能協同調度模型,中國造紙, 42(12):158-169.

26.陸造好,滿奕,李繼庚,洪蒙納,何正磊*.(2023)基于深度強化學習的造紙廢水處理過程多目标優化,中國造紙,42(3):13-22.

27.錢繼炜,李繼庚,滿奕,洪蒙納,何正磊*. (2023)基于機器學習的箱紙闆質量離線軟測量建模研究,中國造紙. 42(07): 72-78+129.

28.張一水,滿奕,何正磊*. (2023)造紙工業過程數字孿生模型的構建與應用,造紙科學與技術, 42(5): 1-7.

(二)專利

何正磊;滿奕;劉澤君.瓷磚坯體幹燥過程中坯體溫濕度變化的模拟系統及方法, 2024-7-5,中國, CN202410953459.7

何正磊;滿奕;劉澤君.一種陶瓷生坯熱風幹燥過程的模拟方法, 2024-7-5,中國, CN 2024108956732.3

滿奕;何正磊;陸造好.一種基于強化學習的造紙污水處理優化控制方法, 2023-12-08,中國, CN202311687078.0

滿奕;何正磊;張振亞.一種建築陶瓷質量小試的輔助配料預測方法,2024-7-5,中國, CN202410895687.3

滿奕;何正磊;張振亞.一種基于機器學習的建築陶瓷燒成形變預測方法,2024-7-5,中國, CN202410895808.4

滿奕;何正磊;張振亞.一種基于機器學習實現建築陶瓷坯體小試質量預測的方法,2024-7-5,中國, CN202410895865.2


(三)專著、章節

Tran, K.,He, Z.(2024)Computational Techniques for Smart Manufacturing in Industry 5.0: Methods and Applications.CRC Press, Taylor & Francis Group, USA.

Chen, G.,He, Z*., Man, Y., Li, J., & Hong, M. (2023) Fault Prediction of Papermaking Process Based on Gaussian Mixture Model and Mahalanobis Distance. In Artificial Intelligence for Smart Manufacturing: Methods, Applications, and Challenges (pp. 83-96). Springer, Cham.

Zhang, H.,He, Z*., Man, Y., Li, J., & Hong, M. (2023) Multi-objective optimization of flexible flow-shop intelligent scheduling based on hybrid intelligent algorithm. In Artificial Intelligence for Smart Manufacturing: Methods, Applications, and Challenges (pp. 97-117). Springer, Cham.

Lu, Z.,He, Z.*, Tran, K. P., Thomassey, S., Zeng, X., & Hong, M. (2022) Decision Support Systems for Textile Manufacturing Process with Machine Learning. In Machine Learning and Probabilistic Graphical Models for Decision Support Systems (pp. 107-121). CRC Press, Taylor & Francis Group, USA.

He, Z.*, Tran, K. P., Thomassey, S., Zeng, X., & Yi, C. (2020). Application of Artificial Intelligence in Modeling a Textile Finishing Process. In Reliability and Statistical Computing (pp. 61-84). Springer, Cham.


(四)會議

胡丁丁,何正磊*.基于Kriging-HDMR多智能體強化學習的造紙污水處理過程多目标優化, 2024過程系統工程年會,大連.

Hu D., Chen G.,He, Z*.,Tran K., Zeng X.Paper Break Fault Recognition in Long ProcessofPapermaking Based on Autoencoder,16th International FLINS Conference on Robotics and Artificial Intelligence (FLINS 2024),Madrid, Spain.

He, Z.Modeling and dynamic optimization of carbon emission in the papermaking process, in Global Cleaner Production Conference 2023, Shanghai, China, (特邀報告).

Lu, Z., Hong, M., Man, Y., Zeng. X., &He, Z*. (2023).Reinforcement Learning Method for Multi-objective Optimization of Papermaking Wastewater Treatment Process.InProceedings of the 18th International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2023), Fuzhou, China.

He, Z.Reducing Carbon Emission of Papermaking Process through data-driven models and multi-agent reinforcement learning.2022 International Workshop on Cleaner Production & Carbon Neutrality in the Belt and Road Initiative, Guangzhou, China.

Qian, J., Zhang, Y.,He, Z*., Man, Y., Li, J., & Hong, M. (2022).Influence of potential multi-condition data on soft sensor modeling. InProceedings of the 15th International FLINS Conference on Robotics and Artificial Intelligence (FLINS 2022),Tianjin, China.

Zhang, Y., Qian, J.,He, Z*., Man, Y., Li, J., & Hong, M. (2022).Digital twin for energy optimization in the paper drying process based on genetic algorithm and CADSIM Plus. InProceedings of the 15th International FLINS Conference on Robotics and Artificial Intelligence (FLINS 2022),Tianjin, China.

何正磊,人工智能技術賦能牛仔服裝清潔生産與碳減排,2021中國牛仔時尚産業可持續發展高峰論壇,于都(特邀報告).

何正磊,基于多智能體深度強化學習的造紙污水處理過程多目标優化, 2021中國生态學學會産業生态學專委會學術年會,上海.

He, Z., Tran, K. P., Thomassey, S., Zeng, X., & Yi, C. (2020). A reinforcement learning based decision support system in textile manufacturing process. InProceedings of the 14th International FLINS Conference on Robotics and Artificial Intelligence (FLINS 2020),Cologne, Germany.

He, Z., Tran, K. P., Thomassey, S., Zeng, X., & Yi, C. (2019). Modeling Color Fading Ozonation of Textile Using Artificial Intelligence. InISSAT International Conference on Data Science in Business, Finance and Industry (DSBFI 2019),Danang, Vietnam.

He, Z., Thomassey, S., Zeng, X., Zuo, D., & Yi, C. (2018). The application of process modeling in denim manufacturing. InProceedings of the 13th International Conference on Data Science and Knowledge Engineering for Sensing Decision Support (FLINS 2018),Belfast, UK.

He, Z., Zhou, X., Zuo, D., & Yi, C. (2017).Ozone/UV Collaborative Treatment on the Color Fading of Dyed Cotton. In Proceedings of the 10thTextile Bioengineering and Informatics Society (TBIS2017), Wuhan, China.

Li, M.,He, Z,Cui, T., Wu, Z., Wu, J. (2017).Determination of the content of calcium oxalate crystals in antheraea pernyi cocoon layers based on the inductively coupled plasma-atomic emission spectrometry. Proceedings of the 10thTextile Bioengineering and Informatics Society (TBIS2017), Wuhan, China.

Du, W., Li, T.,He, Z., Zuo, D., Zou, H., Wang, X., & Yi, C. (2015).Comparative assessment of denimgarments treated with laser bleaching and enzymatic bleaching methods. In The Fiber Society 2015 Fall Meeting and Technical Conference,Raleigh, USA.

聯系方式

所在楊志峰院士團隊,歡迎有環境科學與工程、經濟管理、系統工程、工業工程、統計學、數據科學、計算機等專業背景的學生報考碩士研究生!歡迎感興趣的本科生加入課題組!

聯系地址:廣東省廣州市番禺區廣州大學城外環西路100号太阳成集团tyc234cc

聯系方式:hezhenglei@gdut.edu.cn

郵政編碼:510006

太阳成集团tyc234cc(中国)股份有限公司 版權所有 粵ICP備05008833号